New approximate solutions to time fractional order partial differential equations optimal auxilary function method

نویسندگان

چکیده

In this article, approximate solutions of some PDE fractional order are investi?gated with the help a new semi-analytical method called optimal auxiliary function method. The proposed was tested upon time-fractional Fisher equation, Fornberg-Whitham and Inviscid Burger equation. beauty is that there no need for discretization assumptions small or large parameters provides an ap?proximate solution after only one iteration. numerical results obtained by compared other existing methods used in literature. From graphical results, it clear gives better than methods. MATHEMATICA software pack?age has been huge computational work.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approximate method for solving fractional system differential equations

IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...

متن کامل

On Approximate Solutions of Second-Order Linear Partial Differential Equations

In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equation can be solved and approximate va...

متن کامل

An efficient new iterative method for finding exact solutions of nonlinear time-fractional partial differential equations

In recent years, notable contributions have been made to both the theory and applications of the fractional differential equations. These equations are increasingly used to model problems in research areas as diverse as population dynamics, mechanical systems, fiber optics, control, chaos, fluid mechanics, continuous-time random walks, anomalous diffusive and subdiffusive systems, unification o...

متن کامل

A numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative

In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...

متن کامل

Wavelet Method for Nonlinear Partial Differential Equations of Fractional Order

A wavelet method to the solution for time-fractional partial differential equation, by which combining with Haar wavelet and operational matrix to discretize the given functions efficaciously. The time-fractional partial differential equation is transformed into matrix equation. Then they can be solved in the computer oriented methods. The numerical example shows that the method is effective.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Thermal Science

سال: 2023

ISSN: ['0354-9836', '2334-7163']

DOI: https://doi.org/10.2298/tsci23s1009n